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Constructed response items
test-taker required to produce a response, rather than select one
from a predefined set

measure complex skills
can be applied to various tasks (describe, summarise, formalize, ...)
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Constructed response items
scoring process requires judgment
time-consuming
higher cost of testing, longer time need to calculate and deliver scores
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Constructed response items
scoring process requires judgment
time-consuming 
higher cost of testing, longer time need to calculate and deliver scores

„In the interests of economy [...] and to take advantage of the capacity for automated coding
that the electronic medium offers, for the electronic reading assessment a higher proportion 
of items requiring no coder judgment has been included”
PISA 2009 Assessment Framework

„The labor required to score CR items is a major assessment cost. A variety of systems 
have been or are being developed and placed in service to automatically score student essay 
and other CR items using AI engines. Based on ASG’s research, today these systems cost 
between $.50 and $3 per response with the bulk of the pricing by vendors at the higher end 
of the range. It is assumed that as time passes and systems continue to mature, 
pricing should become more affordable.”
Stanford Center for Opportunity Policy in Education 2010 Report „The Cost of New Higher Quality Assessments”
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Constructed response items
scoring process requires judgment
time-consuming 
higher cost of testing, longer time need to calculate and deliver scores

„In the interests of economy [...] and to take advantage of the capacity for automated coding
that the electronic medium offers, for the electronic reading assessment a higher proportion 
of items requiring no coder judgment has been included”
PISA 2009 Assessment Framework

„The labor required to score CR items is a major assessment cost. A variety of systems 
have been or are being developed and placed in service to automatically score student essay 
and other CR items using AI engines. Based on ASG’s research, today these systems cost 
between $.50 and $3 per response with the bulk of the pricing by vendors at the higher end 
of the range. It is assumed that as time passes and systems continue to mature, 
pricing should become more affordable.”
Stanford Center for Opportunity Policy in Education 2010 Report „The Cost of New Higher Quality Assessments”

unclear whether selected-response item can provide the same information about the test-taker
group differences in performance on selected vs. constructed response items have been observed
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Constructed response items
most of to-date research has focused on automated scoring

Callear et al.; Bachman et al.; Mitchell et al.
 C-rater

Sukkarieh&Pulman
Bailey&Meurers
Mohler&Mihalcea
Meurers et al., Ziai et al. Ott et al.
UKP-BIU
Kaggle challenge
SemEval task
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Callear et al.; Bachman et al.; Mitchell et al.
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Sukkarieh&Pulman
Bailey&Meurers
Mohler&Mihalcea
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UKP-BIU
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SemEval task

alternative: computer-assisted scoring
Basu et al., 2013 (Microsoft): „Powergrading: A Clustering Approach 
to Amplify Human Effort for Short Answer Grading”

our work: developped in parallel, along the same idea
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Premise 
„similar” responses express the same content,
thus are likely to receive the same score
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Premise 
„similar” responses express the same content,
thus are likely to receive the same score

Questions
By what order of magnitude can the number of responses
to score be reduced while maintaining acceptable scoring accuracy?
 

 

Does grouping similar responses make manual scoring faster?
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Premise 
„similar” responses express the same content,
thus are likely to receive the same score

Questions
By what order of magnitude can the number of responses
to score be reduced while maintaining acceptable scoring accuracy?
→ accuracy vs. rater’s workload 
     intrinsic evaluation via simulation

 

Does grouping similar responses make manual scoring faster?
→ time-on-task
     task-based evaluation in a real-life setting This work

LREC-14
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Outline

Data

Clustering: features, method, parameter

Experiment: Timing the scoring task

Conclusions and further work
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Data
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Data

Placement tests for DaF courses at Saarland University

Tests administered via online platform

Listening comprehension (LC):
short constructed response items
testlet: 3 audio prompts of increasing difficulty
about 24 questions per testlet
test-takers can read questions before/during listening
audio can be played twice for most of the items
test-takers allowed to take notes on paper

most questions scored on 1-point scale
partial credits at .5-points
scoring done by teachers



14 |

Data

Angloa
Angol
angola
Angola
Ängola
Angolia
Ängolij
Angolla
angorla
Angula
aus Anggola
aus angloa
aus Angola
Aus Angola
Aus Angola.

Aus Angora
Aus Andorra
aus Engola
aus ingol
England
Engola
Engula
Berlin

Norma kommt aus Angola
Norma komms aus Angola
Norma kommst aus Angola.
Norma kommst aus Angola.
Norma kommt auf Angola
Norma kommt aus Angola.
Norma kommt aus Angolla.
Norma kommt von Angola
Norma komt aus Angola
Momma kommt aus Angola.

Er kommt aus Angola
Sie komme aus Angola
sie kommt aus Angola
Sie kommt aus Angola
Sie kommt aus Angola.
sie kommt aus Angolla
Sie kommt aus Angora.
Aus Angola kommt sie.
Norma

Woher kommt Norma? 
Where does Norma come from?
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Data

er is aus
keine zeite
Besuche mehr Kultur.
aus zum Theatre, Kino
kino, theatre, Frankfurt
Er wohnt  zusamen mit Marita
Abends ins Kino oder  ins Theater
besser ins theater oder ins kino gehen
das kulturelles Angebot ist meh interessant, Kino und Theater
Er geht am Abnd lieber ins kino, seit er mit Marita zusammen ist .
er hat eine Freundin und bevorzugt ins Kino oder Theater zu gehen
Da er in Frankfurt woht, es es ihn leichter ins Kino oder Theater geht.
Er gehe ins Kino oder ins Teather mit seine Frau und sie haben kein Zeit.
davor hat er mehr Zeit und jetzt hat er verschiedenen Kulturelles angeboten
am Abend ins Kino,Theater geht,es gibt viele kullturelle Angebote in Frankfurt
er geht jetzt viel ins kino, in theater: es gibt eine reiche Kultural Angebot in Frankfurt
Da er mit jemandem wohnt, sieht er jetzt nicht so viel fern, weil sie oft ins Theater oder ins Kino gehen.
Er geht ins Kino und Theater. Herr Wienert lebt in München und es gibt reiches kulturelles Angebot dort.
Als er jetzt wohnt mit Rita zusammen, und möchte gern in Kino oder Theater gehen; wo Herr Wienert lebt, 
       gibt es viele kulturelle Angebote.
Denn er wohnt zusammen mit seiner Freundin und sie gehen ins Kino und ins Theater zusammen. Deshalb hat er 
       nicht so viel Zeit, um fernzusehen.
Weil er hat jetzt viel Arbeit zu tun, ausserdem jetzt er keine Freundin hat. Er hat viel mehr TV mit seine Alter-Freundin 
       gesehen, vorher sie sind auch ins Kino und Theater zusammen gegangen, usw.

(usw.)

Warum sieht Herr Wienert jetzt nicht mehr so viel fern?
Why doesn't Mr Wienert watch so much TV anymore?
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Data

response tokens

5 placement test rounds (April-October 2013) 
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Clustering the responses
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Clustering the responses

Preprocessing
removing punctuation, lemmatization (TreeTagger), lowercasing
collapsing token-identical strings to single observation
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Clustering the responses

Preprocessing
removing punctuation, lemmatization (TreeTagger), lowercasing
collapsing token-identical strings to single observation
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Clustering the responses

Features
n-grams

 
 

keywords 
 
 

question material
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Clustering the responses

Features
n-grams

word n-grams {1,2,3}, skip n-grams {2,3}
character n-grams before lemmatization {1,2,3,4}

keywords (KW) 
most relevant concepts from target answers
simple weighing by repeating 100 times in vectors

question material (QM)
remove question’s topic lexemes
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Clustering the responses

Clustering setup
single pass clustering
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Clustering the responses

Clustering setup
single pass clustering
cosine similarity wrt. centroids of created clusters

if greater than Threshold, create new cluster
otherwise, include in centroid’s cluster

four models
include KW exclude QW
include KW don't exclude QW
don't include KW exclude QW
don't include KW don't exclude QW

thresholds
[0.1:0.1:0.9]
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Clustering the responses

Experimental conditions
3 + 2 sets of test data (5 tests)

3 scoring conditions (scoring sheets presented in one of 3 modes)
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Clustering the responses

Experimental conditions
3 + 2 sets of test data (5 tests)

3 scoring conditions (scoring sheets presented in one of 3 modes)

by Test-Taker TT
 

by Question:
responses ordered by Frequency: Q_F
responses Clustered: Q_C1, Q_C2, Q_C3
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Clustering the responses

Experimental conditions
3 + 2 sets of test data (5 tests)

3 scoring conditions (scoring sheets presented in one of 3 modes)

by Test-Taker TT
                       as in pen-and-paper setup 

(familiar)
by Question:

responses ordered by Frequency: Q_F ← baseline
responses Clustered: Q_C1, Q_C2, Q_C3
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Clustering the responses

Experimental conditions
3 + 2 sets of test data (5 tests)

3 scoring conditions (scoring sheets presented in one of 3 modes)

by Test-Taker TT
                       as in pen-and-paper setup 

(familiar)
by Question:

responses ordered by Frequency: Q_F ← baseline
responses Clustered: Q_C1, Q_C2, Q_C3

response sheet set of responses displayed to score

TT: responses to all items by one test-taker
Q: responses to one item by all test-takers
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Clustering the responses

Experimental conditions
3 + 2 sets of test data (5 tests)

timing data in 3 scoring conditions (scoring sheets presented in one of 3 modes)

by Test-Taker TT
                       as in pen-and-paper setup 

(familiar)
by Question:

responses ordered by Frequency: Q_F ← baseline
responses Clustered: Q_C1, Q_C2, Q_C3
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Clustering the responses

Experimental conditions
3 + 2 sets of test data (5 tests)

timing data in 3 scoring conditions (scoring sheets presented in one of 3 modes)

by Test-Taker TT
                       as in pen-and-paper setup 

(familiar)
by Question:

responses ordered by Frequency: Q_F ← baseline
responses Clustered: Q_C1, Q_C2, Q_C3

different LC items at each time
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Clustering the responses

Model and parameter selection
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Clustering the responses

Model and parameter selection
based on Q_F data (previously scored)
using standard precision-oriented measures: purity and entropy
 
model: high mean purity / low mean entropy, low variance
            over all questions and similarity thresholds  
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Clustering the responses

Model and parameter selection
based on Q_F data (previously scored)
using standard precision-oriented measures: purity and entropy
 
model: high mean purity / low mean entropy, low variance
            over all questions and similarity thresholds  

no statistical differences 
between the models
→ pick model based on
prior results and linguistic
intuiton:  
include KW, exclude QM
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Clustering the responses

Model and parameter selection
based on Q_F data (previously scored)
using standard precision-oriented measures: purity and entropy
 
threshold for include KW, exclude QM
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Clustering the responses

Model and parameter selection
based on Q_F data (previously scored)
using standard precision-oriented measures: purity and entropy
 
threshold for include KW, exclude QM

mid-range 
to allow larger differences 
in spelling
→ 0.4 
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Time-on-task
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Time-on-task

Is scoring sheets of clustered responses faster than of non-clustered responses?
 



Measures
sheet scoring time: from the time sheet opened to submit

per response scoring time: sheet scoring time / No. responses per sheet
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Time-on-task



Measures
sheet scoring time: from the time sheet opened to submit
 selecting dataset for analysis

per response scoring time: sheet scoring time / No. responses per sheet
 comparisons acorss conditions
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Time-on-task



Dataset for analysis
include

response sheets which have been opened once
if multiple times, then completely scored the first time opened

remove response sheets with very small number of responses

remove sheets with unusually long total scoring time
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Time-on-task
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Time-on-task

TT: at least 15 responses
(half of max no. responses)

remove all the 11 outliers

Dataset for analysis
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Time-on-task



Is scoring sheets of clustered responses faster than of non-clustered responses?
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Time-on-task



Is scoring sheets of clustered responses faster than of non-clustered responses?

            TT marginally different from Q_C3   
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Time-on-task

Scoring mode Per response time
(Grand mean)

TT 3s 20

Q_C3 4s  16 

Q_C2 4s 15

Q_C1 5s 12

Q_F 7s 7

responses per minute
(in the given condition)



Is scoring sheets of clustered responses faster than of non-clustered responses?
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Time-on-task



Is total sheet scoring time linerly related to amount of material to score?
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Time-on-task



Is total sheet scoring time linerly related to amount of material to score?

linear fit not statistical in the TT and Q_F conditions
large differences in RMSE in the Q conditions
best fit for Q_C2
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Time-on-task



Is total sheet scoring time linerly related to amount of material to score?

linear fit not statistical in the TT and Q_F conditions
large differences in RMSE in the Q conditions
best fit for Q_C2

 strongly dependent on properties of content
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Time-on-task
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Conclusions

LREC-14: With basic clustering algorithm mid-80% accuracy can be achieved 
with 40% of responses scored (on our dataset)

Scoring clustered response sheets proceeds faster than scoring non-clustered 
response sheets and is comparable to the familiar scoring mode

Clustering is a promising direction for computer-assisted scoring
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Problems with the presented study

Data: Items not comparable across conditions

Timing: Inaccurate estimate of response scoring time
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Further work

Modelling 
Other clustering algorithms, other similarity measures
Linguistically-informed features
Pre-scoring

User-interface
Score entry
Response/Cluster presentation

Addressing the major problems of the present study
Data: items not comparable across conditions
Timing: inaccurate estimate of response scoring time
 Controlled timing experiment
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Thank you

(contact: magdalena.wolska@uni-tuebingen.de)
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