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Introduction

• Classify (food) relations, using a Distant 
Supervision approach (DS).

• Optimize training data 
selection/representation.

• Investigate degrees of freedom in 
classifier design:
– knowledge used,
– processing levels.

• Compare DS against simplistic, 
rule-based approach.
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The Relation Types (I)

• SuitsTo(<foodItem>, <foodItem>)
• Definition:

Describes food items that are typically 
consumed together.

• Example: <hamburger, fries>
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The Relation Types (II)

• SubstitutedBy(<foodItem>, <foodItem>)

• Definition:
Lists food items that are fairly similar and can 
be used in similar situations.

• Example: <butter, margarine>
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Relevance of Relation Types Beyond 
the Food Domain
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Relevance of Relation Types Beyond 
the Food Domain

• The relation type 
SuitsTo is relevant 
to many other 
domains.

• The same holds for 
the relation type 
SubstitutedBy.
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Possible Applications

Virtual Customer Advice
• Assist a customer in a supermarket.
• Support with knowledge not available via 

other available modes of information (e.g. 
packaging).
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Domain-Specific Corpus
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Domain-Specific Corpus
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Distant Supervision Labeling

Using:
• Distant Supervision  

Assumption
• Relation database
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Distant Supervision Labeling

DB of argument pairs,
e.g. <hamburger, fries> 
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DB of argument pairs,
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Distant Supervision Labeling

DB of argument pairs,
e.g. <hamburger, fries> 

Look for sentences:
“My children's favourite is 
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→ label: SuitsTo

noisy labeling
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Distant Supervision Labeling

DB of argument pairs,
e.g. <hamburger, fries> 

Look for sentences:
“My children's favourite is 
hamburger with fries.“
→ label: SuitsTo
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Distant Supervision Labeling

Gold Standard Testset:
• 2240 sentences, randomly 

chosen from corpus.
• Manually labeled with food 

relations (SuitsTo, 
SubstitutedBy, or None).
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Distribution of Classes

• In the gold standard:

• In the unlabeled food corpus:

Relation Example class ratio in %

SuitsTo My kids love the simple combination 
of fish fingers with mashed potatoes.

60

SubstitutedBy We usually buy margarine instead of 
butter.

9

None On my shopping list, I've got bread, 
cauliflower, ...

31

Relation Argument pairs matched Sentences matched

SuitsTo 1,374 44,692

SubstitutedBy 789 34,771

None 62,191 1,187,101
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Setup for Relation Extraction

• 10K training sentences in each 
configuration.

• Train on distantly-labeled data.
• Enforce estimated class distribution.
• Train Support Vector Machines.
• Binary classifier for each of the target 

relation types (i.e., SuitsTo, 
SubstitutedBy).

• Starting with standard feature set 
(bag-of-words, POS, n-grams, etc.)
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Knowledge: Patterns

<foodItem_1> . . . <foodItem_2>

Relation Pattern Example

SuitsTo FOOD and FOOD,  
FOOD with FOOD, 
FOOD fit to FOOD

My kids love the simple 
combination of fish fingers with 
mashed potatoes.

SubstitutedBy FOOD or FOOD,

FOOD instead of 

FOOD, 

...

We usually buy margarine 
instead of butter.
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Knowledge: Food Types

Food Guide Pyramid (U.S. Department of Agriculture, 1992)
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Knowledge: Food Types

Food Guide Pyramid (U.S. Department of Agriculture, 1992)

• Groups food items 
into 11 common 
categories.

• Items within the same 
category share similar 
(nutritional) 
properties.

• semi-automatic 
mapping 
(Wiegand et al. 2014)
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Knowledge: Food Types

Food Guide Pyramid (U.S. Department of Agriculture, 1992)

example category:

fruits
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Food Guide Pyramid (U.S. Department of Agriculture, 1992)

Knowledge: Food Types

example category:

meat & fish



 31

Pattern Ambiguity

Pattern <foodItem_1> and <foodItem_2>:
• I very often eat fish and fries. 

 SuitsTo
• For these types of dishes you can offer both, 

Burgundy wine and Champagne. 

 SubstitutedBy



 32

Pattern Ambiguity

Pattern <foodItem_1> and <foodItem_2>:
• I very often eat fish[MEAT] and fries[STARCH]. 

 SuitsTo
• For these types of dishes you can offer both, 

Burgundy wine[BEVER] and Champagne[BEVER]. 
 SubstitutedBy

How can food categories help resolve this ambiguity?
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Pattern Ambiguity

Pattern <foodItem_1> and <foodItem_2>:
• I very often eat fish[MEAT] and fries[STARCH]. 

 SuitsTo
• For these types of dishes you can offer both 

Burgundy wine[BEVER] and Champagne[BEVER]. 
 SubstitutedBy

Type Assumption:

Relation Rule

SuitsTo <MEAT, STARCH>

SubstitutedBy <BEVERAGE, BEVERAGE>
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Pattern Ambiguity

Pattern <foodItem_1> and <foodItem_2>:
• I very often eat fish[MEAT] and fries[STARCH]. 

 SuitsTo
• For these types of dishes you can offer both 

Burgundy wine[BEVER] and Champagne[BEVER]. 
 SubstitutedBy

Type Assumption:

Relation Rule

SuitsTo <X, Y>

SubstitutedBy <X, X>



 35

Degrees of Freedom in Building 
Classifiers

Knowledge

patterns
types

Classifier

DS
rule-based

Processing Level

argument level
sentence level
feature level

Relation Types

SuitsTo
SubstitutedBy
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Argument-Level Data Selection

Idea:
Use typical positive (negative) 
relation instances for training.

→ Create ranking of argument pairs.
- High ranks: positive instances.
- Low ranks: negative instances.

→ Select argument pairs from these rankings.
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Argument-Level Data Selection

Except from a random selection 
of argument pairs, consider: 

→ Create rankings.
→ Select argument pairs from these rankings.

external knowledge statistical 
association

patterns frequency

food types PMI

ontology-based 
similarity (WordNet)
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Argument-Level Data Selection: 
Results

Using the standard feature set: 
SuitsTo SubstitutedBy

positive positive

negative rand. freq pmi ontol. patt type rand. freq pmi ontol. patt type

random

freq

pmi

ontol.

patt

type
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Argument-Level Data Selection: 
Results

Using the standard feature set: 
SuitsTo SubstitutedBy

positive positive

negative rand. freq pmi ontol. patt type rand. freq pmi ontol. patt type

random

freq

pmi

ontol.

patt

type

Conditions:
- Distant Supervision labeling
- SVM binary classifiers
- Standard feature set
- Gold standard evaluation

Results reported in F-score
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Argument-Level Data Selection: 
Results

Using the standard feature set: 

 
→ Overall, data selection does make a difference.

SuitsTo SubstitutedBy

positive positive

negative rand. freq pmi ontol. patt type rand. freq pmi ontol. patt type

random 41.8 61.8

freq

pmi

ontol.

patt 60.4 66.8

type
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SuitsTo SubstitutedBy

positive positive

negative rand. freq pmi ontol. patt type rand. freq pmi ontol. patt type

random 41.8 49.2 61.8 65.1

freq 50.1 64.0

pmi 50.7 64.8

ontol. 50.3 64.7

patt 60.4 66.8

type 49.2 64.6

Argument-Level Data Selection: 
Results

Best methods for choosing positive instances: 

 
→ Effectiveness of methods differs between relation 
     types.
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SuitsTo SubstitutedBy

positive positive

negative rand. freq pmi ontol. patt type rand. freq pmi ontol. patt type

random 41.8 49.2 61.8 65.1

freq 50.1 64.0

pmi 50.7 64.8

ontol. 50.3 64.7

patt 60.4 66.8

type 49.2 64.6

Argument-Level Data Selection: 
Results

→ SuitsTo: PMI as measure of argument association.
→ SubstitutedBy: high-precision patterns.
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Sentence-Level Data Selection

Select sentences that:
→ Match any pattern of the target relation.
→ Satisfy the type assumption.

external knowledge:

patterns

food types

Idea:
Use relation-specific knowledge to filter training 
instances:
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Sentence-Level Data Selection: 
Results

Using the standard feature set, and the best 
configuration from argument-level filtering: 

SuitsTo SubstitutedBy

positive positive

negative no 
filter

pattern type negative no 
filter

pattern type

no filter no filter

pattern pattern

type type
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Sentence-Level Data Selection: 
Results

Using the standard feature set, and the best 
configuration from argument-level filtering: 

SuitsTo SubstitutedBy

positive positive

negative no 
filter

pattern type negative no 
filter

pattern type

no filter no filter

pattern pattern

type type

- Distant Supervision labeling
- SVM binary classifiers
- Standard feature set
- Pre-Selection: best config. 
  from argument-level filtering
- Gold standard evaluation

Results reported in F-score
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Sentence-Level Data Selection: 
Results

Using the standard feature set, and the best 
configuration from argument-level filtering: 

SuitsTo SubstitutedBy

positive positive

negative no 
filter

pattern type negative no 
filter

pattern type

no filter 60.40 no filter 66.80

pattern pattern

type type
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Sentence-Level Data Selection: 
Results

Using the standard feature set, and the best 
configuration from argument-level filtering: 

→ Sentence-level filtering does not help.

SuitsTo SubstitutedBy

positive positive

negative no 
filter

pattern type negative no 
filter

pattern type

no filter 60.40 43.22 60.66 no filter 66.80 64.52 66.05

pattern 47.44 49.19 47.51 pattern 28.34 63.66 27.05

type 60.70 43.15 60.90 type 67.53 64.50 66.15
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Feature-Level Processing

external knowledge:

patterns

food types

Additional features encode:
→ Whether a sentence matches a pattern.
→ Type of relation arguments.

Idea:
Use relation-specific knowledge as features.
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Feature-Level Processing: Results

Adding pattern and type information to the best 
configuration from previous filtering: 

argument level sentence 
level

feature level

random best best +pattern +type all

SuitsTo 41.78 60.40 60.90

SubstitutedBy 61.75 66.80 67.53
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Feature-Level Processing: Results

Adding pattern and type information to the best 
configuration from previous filtering: 

argument level sentence 
level

feature level

random best best +pattern +type all

SuitsTo 41.78 60.40 60.90

SubstitutedBy 61.75 66.80 67.53

- Distant Supervision labeling
- SVM binary classifiers
- Standard feature set
- Pre-Selection: best config. 
  from argument- & sentence-level filtering
- Gold standard evaluation

Results reported in F-score
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Feature-Level Processing: Results

Adding pattern and type information to the best 
configuration from previous filtering: 

* significantly better than best sentence-level result
  at p < 0.05 (paired t-test)

argument level sentence 
level

feature level

random best best +pattern +type all

SuitsTo 41.78 60.40 60.90 60.58 61.81* 61.89*

SubstitutedBy 61.75 67.00 67.53 67.78 70.37* 70.50*
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argument level sentence 
level

feature level

random best best +pattern +type all

SuitsTo 41.78 60.40 60.90 60.58 61.81* 61.89*

SubstitutedBy 61.75 67.00 67.53 67.78 70.37* 70.50*

Feature-Level Processing

Adding pattern and type information to the best 
configuration from previous filtering: 

→ Type information is beneficial.

* significantly better than best sentence-level result
  at p < 0.05 (paired t-test)
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argument level sentence 
level

feature level

random best best +pattern +type all

SuitsTo 41.78 60.40 60.90 60.58 61.81* 61.89*

SubstitutedBy 61.75 67.00 67.53 67.78 70.37* 70.50*

Feature-Level Processing

Adding pattern and type information to the best 
configuration from previous filtering: 

→ Type information is beneficial.
→ Pattern information is not.

* significantly better than best sentence-level result
  at p < 0.05 (paired t-test)
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argument level sentence 
level

feature level

random best best +pattern +type all

SuitsTo 41.78 60.40 60.90 60.58 61.81* 61.89*

SubstitutedBy 61.75 67.00 67.53 67.78 70.37* 70.50*

Feature-Level Processing

Adding pattern and type information to the best 
configuration from previous filtering: 

→ Type information is beneficial.
→ Pattern information is not.
→ Impact of knowledge depends on processing level.

Remember:
patterns did help on

argument-level
filtering.
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Degrees of Freedom in Building 
Classifiers

Knowledge

patterns
types

Classifier

DS
rule-based

Processing Level

argument level
sentence level
feature level

Relation Types

SuitsTo
SubstitutedBy
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Classifier Comparison

• Distantly-supervised learner
• Simplistic, rule-based decision
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Classifier Comparison

• Distantly-supervised learner
• Simplistic, rule-based decision

Relation Type-Assumption

SuitsTo <X, Y>

SubstitutedBy <X, X>

Relation Pattern-Rule

SuitsTo X and Y, X with Y, ...

SubstitutedBy X or Y, X instead of Y, ...
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Feature-Level Processing

Comparing classifiers:
Distant Supervision (DS) vs. rule-based (RB)

Major DS
random

DS
best

RB
pattern

RB
type super

SuitsTo 37.50 41.78 61.89 42.60 62.65 73.48

SubstitutedBy 47.64 61.75 70.51 63.97 62.02 77.77
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Major DS
random

DS
best

RB
pattern

RB
type super

SuitsTo 37.50 41.78 61.89 42.60 62.65 73.48

SubstitutedBy 47.64 61.75 70.51 63.97 62.02 77.77

Feature-Level Processing

→ SuitsTo: RB achieves competitive (better) results.
→ Type information seems highly informative.

Comparing classifiers:
Distant Supervision (DS) vs. rule-based (RB)
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Major DS
random

DS
best

RB
pattern

RB
type super

SuitsTo 37.50 41.78 61.89 42.60 62.65 73.48

SubstitutedBy 47.64 61.75 70.51 63.97 62.02 77.77

Feature-Level Processing

→ SubstitutedBy: DS learner outperforms RB.
→ DS learner profits from multiple information sources.

Comparing classifiers:
Distant Supervision (DS) vs. rule-based (RB)
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Outline of Talk

• Introduction
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Conclusions (I)

• Argument-level and feature-level processing help 
to increase classification performance.

• Sentence-level filtering is not beneficial.

Findings regarding potential improvement of 
Distant Supervision learning:
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Conclusions (I)

• Argument-level and feature-level processing help 
to increase classification performance.

• Sentence-level filtering is not beneficial.

• Effectiveness of external knowledge varies, 
depending on

– the relation type,

– the processing level.

• Patterns beneficial on argument-level.

• Food types beneficial on feature-level.

Findings regarding potential improvement of 
Distant Supervision learning:
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Conclusions (II)

• Substantial improvement of performance by

– careful selection of training data,

– appropriate feature design.
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Conclusions (II)

• Substantial improvement of performance by

– careful selection of training data,

– appropriate feature design.

• Simple rule-based decision achieves competitive 
performance in some cases.
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Thank You!
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Standard Feature Set
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Gold Standard

• 2240 manually-labeled sentences.

• “Natural” class distribution estimated from a labeled 
random sample of 100 sentences.

• Annotation schema from (Wiegand et al., 2012b).

• Inter-annotator agreement

- on a subset of 400 sentences

- 2 annotators

- Kappa 0.78 (Cohen’s Kappa (Cohen, 1960)

→ substantial agreement (Landis and Koch,1977).
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Data Selection Methods
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Argument-Level Data Selection

Using the standard feature set: 

→ SuitsTo: PMI as measure of argument association.
→ SubstitutedBy: high-precision patterns.
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Feature-Level Processing

Comparing classifiers:
(training on best feature configuration) 

→ SuitsTo: type information seems highly informative.
→ SubstitutedBy: profits from multiple information 
     sources.
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Why is RB sometimes better than RB?

In general:

• RB classifiers are high-precision classifiers.

• Learners are high-recall classifiers.

• SuitsTo is a majority class → a good classifier should 
aim for high precision.

• SubstitutedBy is a minority class → a good classifier 
should aim for high recall.

• → For SuitsTo, the RB classifier is a suitable match.
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