

Relation Extraction for the Food Domain without Labeled Training Data – Is Distant Supervision the Best Solution?

PoITAL 2014

By Melanie Reiplinger, Michael Wiegand, and Dietrich Klakow Spoken Language Systems Saarland University, Germany

Outline of Talk

- Tasks & Data
- Methods and Experiments of Producing Training Data
- Conclusions

Outline of Talk

S

- Introduction
- Tasks & Data
- Methods and Experiments of Producing Training Data
- Conclusions

Introduction

- Classify (food) relations, using a Distant Supervision approach (DS).
- Optimize training data selection/representation.
- Investigate degrees of freedom in classifier design:
 - -knowledge used,
 - -processing levels.
- Compare DS against simplistic, rule-based approach.

Outline of Talk

- Introduction
- Tasks & Data
- Methods and Experiments of Producing Training Data
- Conclusions

The Relation Types (I)

- SuitsTo(<foodItem>, <foodItem>)
- Definition:
 - Describes food items that are typically consumed together.
- Example: <hamburger, fries>

The Relation Types (II)

- SubstitutedBy(<foodItem>, <foodItem>)
- Definition:

Lists food items that are fairly similar and can be used in similar situations.

• Example: <*butter, margarine*>

Relevance of Relation Types Beyond the Food Domain

Relevance of Relation Types Beyond the Food Domain

The relation type
 SuitsTo is relevant
 to many other
 domains.

Relevance of Relation Types Beyond the Food Domain

The relation type
 SuitsTo is relevant
 to many other
 domains.

Relevance of Relation Types Beyond the Food Domain

- The relation type
 SuitsTo is relevant to many other domains.
- The same holds for the relation type
 SubstitutedBy.

Virtual Customer Advice

- Assist a customer in a supermarket.
- Support with knowledge not available via other available modes of information (e.g. packaging).

Domain-Specific Corpus

Torten – fertig in max. 30 Minuten

Pasta: leichte Soße für Spaghetti & Co

 Türkische Rezepte: mehr als nur Döner

Ohne Kohlenhydrate kochen & backen

antipasti apfelkuchen aubergine blechkuchen blumenkohl brownies bruschetta chili con carne couscous couscous salat crepe cupcake eierkuchen erdbeerkuchen flammkuchen gefüllte paprika gulasch gurkensalat hackfleisch johannisbeeren isbesprichestkusben

Domain-Specific Corpus

Runde Zucchini Vom 07.07.2012 21:43 🥩 🖬 🥩 $\boxtimes \boxtimes \triangle$ Hallo liebe Chefköche, **Tolle Rezeptideen** Ideen für scharfe Gerichte bin auf der Suche nach Rezepten mit runden Zucchini. Habe hier in Fietelino 🕮 🔒 finden Sie beim Original. Alle der Datenbank nur ein Rezept gefunden. Auch würde mich Infos hier! www.tabasco.de/Rezepte Mitglied seit 29.10.2008 interessieren wo man die runden Zucchini zu kaufen bekommt. 84 Beiträge (ø0,06/Tag) Habe sie noch nicht wirklich gesehen. Habe nur im Vorbeigehen in 🗩 🛃 💽 🐻 Auflauf Rezept Zeitschriften gesehen, das es sie gibt. Kochen Rezepte Backen Rezepte Vielen Dank im Vorraus für Eure Hilfe. Kuchen Rezept Google-Anzeigen LG Birgit 😨 Diesen Beitrag / einen Verstoß melden Vom 07.07.2012 21:49 🧐 🖬 🛋 $\Sigma \Sigma \bigtriangleup \nabla$ hallo wo Du sie in Hamburg bekommst, weiss ich nicht. Sie eignen sich zum Füllen mit Hackfleisch, evtl käsehaltig und zum Überbacken. Moioverde 💕 In Scheiben geschnitten, paniert und ausgebacken mit Tomatensauce schmecken sie auch sehr gut. gruß mo Mitglied seit 14.11.2008 7.947 Beiträge (ø5,95/Tag) 🗩 📳 💷 Δ Diesen Beitrag / einen Verstoß melden Vom 07.07.2012 21:53 📄 🖬 🧭 $\Sigma \Sigma \bigtriangleup \nabla$ Hallo Birgit, runde Zucchinis kannst Du doch eigentlich wie normale Zucchinis verwenden nur die Garzeiten würde ich eventuell je nach dem bis 10 Minuten verlängern. kirsten2371 🖁

Using:

- Distant Supervision Assumption
- Relation database

DB of argument pairs, e.g. <hamburger, fries>

DB of argument pairs, e.g. <hamburger, fries>

Look for sentences: "My children's favourite is hamburger with fries." → label: SuitsTo

DB of argument pairs, e.g. <hamburger, fries>

DB • SubstitutedBy • SuitsTo Distant Supervision labeling SuitsTo Substituted By

Look for sentences: "My children's favourite is hamburger with fries." → label: SuitsTo

DB of argument pairs, e.g. <hamburger, fries>

Look for sentences: "My children's favourite is hamburger with fries." → label: SuitsTo

Gold Standard Testset:

- 2240 sentences, randomly chosen from corpus.
- Manually labeled with food relations (SuitsTo, SubstitutedBy, or None).

Distribution of Classes

• In the gold standard:

Relation	Example	class ratio in %
SuitsTo	My kids love the simple combination of <u>fish fingers</u> with <u>mashed potatoes</u> .	60
SubstitutedBy	We usually buy <u>margarine</u> instead of <u>butter</u> .	9
None	On my shopping list, I've got <u>bread</u> , <u>cauliflower</u> ,	31

• In the unlabeled food corpus:

Relation	Argument pairs matched	Sentences matched
SuitsTo	1,374	44,692
SubstitutedBy	789	34,771
None	62,191	1,187,101

Outline of Talk

- Tasks & Data
- Methods and Experiments of Producing Training Data
- Conclusions

Setup for Relation Extraction

- 10K training sentences in each configuration.
- Train on distantly-labeled data.
- Enforce estimated class distribution.
- Train Support Vector Machines.
- Binary classifier for each of the target relation types (i.e., SuitsTo, SubstitutedBy).
- Starting with standard feature set (bag-of-words, POS, n-grams, etc.)

Degrees of Freedom in Building Classifiers

Degrees of Freedom in Building Classifiers

Knowledge: Patterns

<foodItem_1> . . . <foodItem_2>

Relation	Pattern	Example
SuitsTo	FOOD and FOOD, FOOD with FOOD, FOOD fit to FOOD	My kids love the simple combination of <u>fish fingers</u> with mashed potatoes.
SubstitutedBy	FOOD or FOOD, FOOD instead of FOOD, 	We usually buy <u>margarine</u> instead of <u>butter</u> .

- Groups food items into 11 common categories.
 - Items within the same category share similar (nutritional) properties.
- semi-automatic mapping
 (Wiegand et al. 2014)

Pattern <foodItem_1> and <foodItem_2>:

- I very often eat fish and fries.
- \rightarrow SuitsTo
- For these types of dishes you can offer both, Burgundy wine and Champagne.
- \rightarrow SubstitutedBy

Pattern <foodItem_1> and <foodItem_2>:

- I very often eat fish[MEAT] and fries[STARCH].
- \rightarrow SuitsTo
- For these types of dishes you can offer both, Burgundy wine[BEVER] and Champagne[BEVER].
 → SubstitutedBy

How can food categories help resolve this ambiguity?

Pattern <foodItem_1> and <foodItem_2>:

- I very often eat fish[MEAT] and fries[STARCH].
- \rightarrow SuitsTo
- For these types of dishes you can offer both Burgundy wine[BEVER] and Champagne[BEVER].
 → SubstitutedBy

Type Assumption:				
	Relation	Rule		
	SuitsTo	<meat, starch=""></meat,>		
	SubstitutedBy	<beverage, beverage=""></beverage,>		

Pattern <foodItem_1> and <foodItem_2>:

- I very often eat fish[MEAT] and fries[STARCH].
- \rightarrow SuitsTo
- For these types of dishes you can offer both Burgundy wine[BEVER] and Champagne[BEVER].
 → SubstitutedBy

Type Assumption:				
	Relation	Rule		
	SuitsTo	<x, y=""></x,>		
	SubstitutedBy	<x, x=""></x,>		

Degrees of Freedom in Building Classifiers

Argument-Level Data Selection

Idea: Use **typical** positive (negative) relation instances for training.

- \rightarrow Create ranking of argument pairs.
- High ranks: positive instances.
- Low ranks: negative instances.
- \rightarrow Select argument pairs from these rankings.

Argument-Level Data Selection

Except from a random selection of argument pairs, consider:

external knowledge	statistical association
patterns	frequency
food types	PMI
ontology-based similarity (WordNet)	

- \rightarrow Create rankings.
- \rightarrow Select argument pairs from these rankings.

Using the standard feature set:

		SuitsTo					SubstitutedBy					
		positive					positive					
negative	rand.	freq	pmi	ontol.	patt	type	rand.	freq	pmi	ontol.	patt	type
random												
freq												
pmi												
ontol.												
patt												
type												

Using the standard feature set:

	-	SuitsTo						SubstitutedBy				
			pos	sitive			positive					
negative	rand.	freq	pmi	ontol.	patt	type	rand.	freq	pmi	ontol.	patt	type
random												
freq												
pmi				Cor	nditio	ns:						
ontol.				- Di	stan	t Sup	ervisi	ion la	abelir	ng		
patt				- S'	√M b	inary	class	sifier	S			
type				- St	anda	ard fe	ature	set				
				- G	old s	tanda	ard e	/alua	tion			

Results reported in F-score

Using the standard feature set:

		SuitsTo					SubstitutedBy					
		positive					positive					
negative	rand.	freq	pmi	ontol.	patt	type	rand.	freq	pmi	ontol.	patt	type
random	41.8						61.8					
freq												
pmi												
ontol.												
patt			60.4								66.8	
type												

 \rightarrow Overall, data selection *does* make a difference.

Best methods for choosing positive instances:

		SuitsTo					SubstitutedBy					
		positive					positive					
negative	rand.	freq	pmi	ontol.	patt	type	rand.	freq	pmi	ontol.	patt type	
random	41.8		49.2				61.8				65.1	
freq			50.1								64.0	
pmi			50.7								64.8	
ontol.			50.3								64.7	
patt			60.4								66.8	
type			49.2								64.6	

→ Effectiveness of methods differs between relation types.

		SuitsTo					SubstitutedBy				
		positive				positive					
negative	rand.	freq	pmi	ontol.	patt	type	rand.	freq	pmi	ontol.	patt type
random	41.8		49.2				61.8				65.1
freq			50.1								64.0
pmi			50.7								64.8
ontol.			50.3								64.7
patt			60.4								66.8
type			49.2								64.6

 \rightarrow SuitsTo: PMI as measure of argument association. \rightarrow SubstitutedBy: high-precision patterns.

Sentence-Level Data Selection

Idea:

Use relation-specific knowledge to filter training instances:

Select sentences that:

- \rightarrow Match any pattern of the target relation.
- \rightarrow Satisfy the type assumption.

Using the standard feature set, and the best configuration from argument-level filtering:

	Suit	sTo		SubstitutedBy				
		positive		positive				
negative	no filter	pattern	type	negative	no filter	pattern	type	
no filter				no filter				
pattern				pattern				
type				type				

Using the standard feature set, and the best configuration from argument-level filtering:

	Suit	sTo		SubstitutedBy					
		positive			positive				
negative	no filter	pattern	Dictort Supervisio	no no loboliu	pattern	type			
no filter		-	SVM binary classi	fiers	ig				
pattern			 Standard feature s Pre-Selection: bes 	set st config					
type			from argument-lev	el filterii	ng				
		F	Results reported in	F-score		46			

Using the standard feature set, and the best configuration from argument-level filtering:

	Suit	sTo		SubstitutedBy				
		positive		positive				
negative	no filter	pattern	type	negative	no filter	pattern	type	
no filter	60.40			no filter	66.80			
pattern				pattern				
type				type				

Using the standard feature set, and the best configuration from argument-level filtering:

	Suit	SubstitutedBy					
		positive	positive				
negative	no filter	pattern	type	negative	no filter	pattern	type
no filter	60.40	43.22	60.66	no filter	66.80	64.52	66.05
pattern	47.44	49.19	47.51	pattern	28.34	63.66	27.05
type	60.70	43.15	60.90	type	67.53	64.50	66.15

 \rightarrow Sentence-level filtering does not help.

Idea: Use relation-specific knowledge as features.

external knowledge:

patterns

food types

Additional features encode:

- \rightarrow Whether a sentence matches a pattern.
- \rightarrow Type of relation arguments.

Feature-Level Processing: Results

Adding pattern and type information to the best configuration from previous filtering:

	argume	nt level	sentence level	fea		
	random	best	best	+pattern	+type	all
SuitsTo	41.78	60.40	60.90			
SubstitutedBy	61.75	66.80	67.53			

Feature-Level Processing: Results

Adding pattern and type information to the best configuration from previous filtering:

Feature-Level Processing: Results

Adding pattern and type information to the best configuration from previous filtering:

	argume	nt level	sentence level	sentence feature level			
	random	best	best	+pattern	+type	all	
SuitsTo	41.78	60.40	60.90	60.58	61.81*	61.89*	
SubstitutedBy	61.75	67.00	67.53	67.78	70.37*	70.50*	

 * significantly better than best sentence-level result at p < 0.05 (paired t-test)

Adding pattern and type information to the best configuration from previous filtering:

	argument level		sentence level	feature level		əl
	random	best	best	+pattern	+type	all
SuitsTo	41.78	60.40	60.90	60.58	61.81*	61.89*
SubstitutedBy	61.75	67.00	67.53	67.78	70.37*	70.50*

 * significantly better than best sentence-level result at p < 0.05 (paired t-test)

 \rightarrow Type information is beneficial.

Adding pattern and type information to the best configuration from previous filtering:

	argument level		sentence level	fea	ature leve	el
	random	best	best	+pattern	+type	all
SuitsTo	41.78	60.40	60.90	60.58	61.81*	61.89*
SubstitutedBy	61.75	67.00	67.53	67.78	70.37*	70.50*

 * significantly better than best sentence-level result at p < 0.05 (paired t-test)

- \rightarrow Type information is beneficial.
- \rightarrow Pattern information is not.

Adding pattern and type information to the best configuration from previous filtering:

	argument level		sentence level	feature level		el
	random	best	best	+pattern	+type	all
SuitsTo	41.78	60.40	60.90	60.58	61.81*	61.89*
SubstitutedBy	61.75	67.00	67.53 pa	Rememt tterns did	ber: help on	70.50*

- \rightarrow Type information is beneficial.
- \rightarrow Pattern information is not.
- \rightarrow Impact of knowledge depends on processing level.

argument-level

filtering.

55

Degrees of Freedom in Building Classifiers

Classifier Comparison

- Distantly-supervised learner
- Simplistic, rule-based decision

Classifier Comparison

- Distantly-supervised learner
- Simplistic, rule-based decision

Relation		Pattern-R	ule	
SuitsTo		X and Y,	X with Y,	
Substitute	edBy	X or Y, X	instead of Y,	
	Relation		Type-Assumption	
	SuitsTo		<x, y=""></x,>	
	SubstitutedBy		<x, x=""></x,>	

Comparing classifiers: Distant Supervision (DS) vs. rule-based (RB)

	Major	DS _{random}	DS _{best}	RB _{pattern}	RB _{type}	super
SuitsTo	37.50	41.78	61.89	42.60	62.65	73.48
SubstitutedBy	47.64	61.75	70.51	63.97	62.02	77.77

Comparing classifiers: Distant Supervision (DS) vs. rule-based (RB)

	Major	DS _{random}	DS _{best}	RB _{pattern}	RB _{type}	super
SuitsTo	37.50	41.78	61.89	42.60	62.65	73.48
SubstitutedBy	47.64	61.75	70.51	63.97	62.02	77.77

 \rightarrow SuitsTo: RB achieves competitive (better) results. \rightarrow Type information seems highly informative.

Comparing classifiers: Distant Supervision (DS) vs. rule-based (RB)

	Major	DS _{random}	DS _{best}	RB _{pattern}	RB _{type}	super
SuitsTo	37.50	41.78	61.89	42.60	62.65	73.48
SubstitutedBy	47.64	61.75	70.51	63.97	62.02	77.77

 \rightarrow SubstitutedBy: DS learner outperforms RB. \rightarrow DS learner profits from multiple information sources.

Outline of Talk

- Introduction
- Tasks & Data
- Methods and Experiments of Producing Training Data
- Experiments
- Conclusions

Conclusions (I)

Findings regarding potential improvement of Distant Supervision learning:

- Argument-level and feature-level processing help to increase classification performance.
- Sentence-level filtering is not beneficial.

Conclusions (I)

Findings regarding potential improvement of Distant Supervision learning:

- Argument-level and feature-level processing help to increase classification performance.
- Sentence-level filtering is not beneficial.
- Effectiveness of external knowledge varies, depending on
 - the relation type,
 - the processing level.
- Patterns beneficial on argument-level.
- Food types beneficial on feature-level.

Conclusions (II)

- Substantial improvement of performance by
 - careful selection of training data,
 - appropriate feature design.

Conclusions (II)

- Substantial improvement of performance by
 - careful selection of training data,
 - appropriate feature design.

• Simple rule-based decision achieves competitive performance in some cases.

Thank You!

References (I)

• The Distant Supervision Assumption:

Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant Supervision for Relation Extraction without Labeled Data. In: Proc. of ACL/IJCNLP (2009).

• The *chefkoch.de* corpus, the surface patterns:

Wiegand, M., Roth, B., Klakow, D.: Web-based Relation Extraction for the Food Domain. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp.222-227. Springer, Heidelberg (2012a).

• The relation database, annotation schema:

Wiegand, M., Roth, B., Lasarcyk, E., Köser, S., Klakow, D.: A Gold Standard for Relation Extraction in the Food Domain. In: Proc. of LREC (2012b).

References (II)

• The Food Guide Pyramid:

U.S. Department of Agriculture, H.N.I.S.: *Home and Garden Bulletin, 252*, Washington D.C., USA (1992).

• Food Types:

Wiegand, M., Roth, B., Klakow, D.: Automatic Food Categorization from Large Unlabeled Corpora and Its Impact on Relation Extraction. In: Proc. of EACL (2014).

• Ontological Similarity Measure:

Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proc. of ACL (1994).

Hamp, B., Feldweg, H.: GermaNet – a Lexical-Semantic Net for German. In: Proc. of ACL Workshop. Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications (1997).

BACK-UP SLIDES

Standard Feature Set

Feature	Description
word-left-window	a window of 2 words to the left of arg1
word-right-window	a window of 2 words to the right of $arg2$
word-window	the word sequence between $arg1$ and $arg2$
left-lemma-window	a window of 2 words to the left of $arg1$ as lemmas
right-lemma-window	a window of 2 words to the right of $arg2$ as lemmas
lemma-window	the word sequence between $arg1$ and $arg2$ as lemmas
bow	all words in the sentence
lemma-bow	lemmas of w_{i-1}, w_{i+1} where $w_i \in \{arg1, arg2\}$
lemma-bigrams	all bigrams $\langle w_i, w_j \rangle$ between arg1 and arg2 as lemmas
pos-left-window	part-of-speech tags of words in a window of 2 words to the left
	of arg1
pos-right-window	part-of-speech tags of words in a window of 2 words to the right
	of arg2
pos-window	part-of-speech sequence between $arg1$ and $arg2$
pos-unigrams	part-of-speech tags of w_{i-1}, w_{i+1} where $w_i \in \{arg1, arg2\}$
pos-bigrams	all part-of-speech bigrams $\langle t_i, t_j \rangle$ between arg1 and arg2
	using lemmas

- 2240 manually-labeled sentences.
- "Natural" class distribution estimated from a labeled random sample of 100 sentences.
- Annotation schema from (Wiegand et al., 2012b).
- Inter-annotator agreement
 - on a subset of 400 sentences
 - 2 annotators
 - Kappa 0.78 (Cohen's Kappa (Cohen, 1960)
 - \rightarrow substantial agreement (Landis and Koch, 1977).

Data Selection Methods

Level	Method	Description	
argument	random	select argument pairs from relation database at random	
	frequency	sort argument pairs according to frequency (of co-occurring in	
		the text corpus)	
	pmi	sort argument pairs according to pointwise mutual information	
		(pmi)	
	$patt^+$	sort argument pairs according to pmi of food items and the	
		surface patterns pertaining to the target relation in descending	
		order	
	patt ⁻ (a)	sort argument pairs according to pmi of food items and the	
		surface patterns pertaining to the target relation in ascending	
		order	
	$patt^{-}(b)$	sort argument pairs according to pmi of food items and the sur-	
		face patterns pertaining to the contrast relation in descending	
		order	
	type	sort type pairs (e.g. <meat,starch>) according to pmi and</meat,starch>	
		consider their actual food instantiations as arguments	
	wup	sort argument pairs according to Wu-&-Palmer [8] similarity in	
		GermaNet [9]	
sentence	pattern	only include sentences in which target food items co-occur with	
		surface pattern from target relation	
	type	only include sentences in which type rule for the pertaining	
		relation (Table 5) is fulfilled	
feature	pattern	include all surface patterns as additional features	
	type	include features indicating the types of the target food items,	
		e.g. <meat,starch> for <<i>fish</i>, <i>chips</i>></meat,starch>	
	standard	standard features directly extracted from training data without	
		external knowledge resources (see Table 7)	/3

Argument-Level Data Selection

Using the standard feature set:

	SuitsTo						SubstitutedBy					
	positive						positive					
negative	rand.	freq	pmi	wup	\mathbf{patt}^+	type	rand.	freq	pmi	wup	\mathbf{patt}^+	type
random	41.8	45.0	49.2	46.0	45.3	42.1	61.8	59.0	63.0	59.8	65.1	60.0
freq	40.1	44.1	50.1	41.4	44.8	40.4	61.0	58.1	61.7	59.0	64.0	59.0
pmi	42.3	45.1	50.7	43.5	47.8	43.0	62.8	58.9	64.2	61.0	64.8	59.3
wup	42.4	45.8	50.3	44.4	45.8	42.0	59.3	57.4	60.8	57.6	64.7	55.3
patt ⁻ (a)	43.7	47.2	52.2	45.4	47.7	42.0	64.8	62.6	67.0	62.9	66.8	63.5
patt (b)	55.0	56.6	60.4	56.7	54.9	54.5	52.5	53.1	57.8	54.7	62.2	50.3
type	42.4	43.8	49.2	44.3	45.9	41.0	61.5	59.3	63.3	59.0	64.6	61.1

 \rightarrow SuitsTo: PMI as measure of argument association. \rightarrow SubstitutedBy: high-precision patterns.

Feature-Level Processing

Comparing classifiers:

(training on best feature configuration)

		Major	\mathbf{DS}_{random}	\mathbf{DS}_{best}	$\mathbf{RB}_{pattern}$	\mathbf{RB}_{type}	\mathbf{RB}_{comb}	super
	Acc	60.00	60.84	68.05	45.49	68.03	44.73	77.58
SuiteTo	\mathbf{Prec}	30.00	53.74	67.45	55.40	66.91	59.03	81.32
Sults10	\mathbf{Rec}	50.00	50.59	62.18	53.13	62.69	53.66	72.49
	\mathbf{F}	37.50	41.78	61.89	42.60	62.65	40.00	73.48
	Acc	91.00	86.39	86.86	91.47	79.28	91.56	92.54
SubstitutedDu	\mathbf{Prec}	45.50	61.28	67.29	77.72	60.55	81.72	78.87
Substitutedby	\mathbf{Rec}	50.00	62.33	77.59	60.28	72.13	57.99	77.31
	\mathbf{F}	47.64	61.75	70.51	63.97	62.02	61.26	77.77

→ SuitsTo: type information seems highly informative.
→ SubstitutedBy: profits from multiple information sources.

Why is RB sometimes better than RB?

In general:

- RB classifiers are high-precision classifiers.
- Learners are high-recall classifiers.
- SuitsTo is a majority class → a good classifier should aim for high precision.
- SubstitutedBy is a minority class → a good classifier should aim for high recall.
- \rightarrow For SuitsTo, the RB classifier is a suitable match.